
Validation Tool
Code Walk-through

Engineering Node

June 21-22, 2006
http://pds.nasa.gov

21-22 June 2006 Validation Tool Code Walk-through 2 of 101

Agenda - Day 1

Paul RamirezValidation Tool

Code Walk-through

1:00 - 5:00 PM

Sean KellyCode Walk-through

Guidelines

11:30 - 12:00 PM

Sean Hardman

Paul Ramirez

Validation Tool

Requirements and Design

9:50 - 11:30 AM

Elizabeth RyeStandards Overview9:05 - 9:50 AM

Dan CrichtonPDS Architecture8:35 - 9:05 AM

Dan CrichtonOpening Remarks8:30 - 8:35 AM

21-22 June 2006 Validation Tool Code Walk-through 3 of 101

Agenda - Day 2

Dan CrichtonWrap Up / Action Items10:30 - 12:00 AM

AllQuestions9:45 - 10:30 AM

Emily LawTest Approach8:35 - 9:45 AM

Dan CrichtonOpening Remarks8:30 - 8:35 AM

Opening Remarks

Dan Crichton

21-22 June 2006 Validation Tool Code Walk-through 5 of 101

Welcome

• Introductions
• Logistics
• Goals

• Questions

PDS Architecture

Dan Crichton

21-22 June 2006 Validation Tool Code Walk-through 7 of 101

Outline

• PDS Mission
• Software Architecture Definition and PDS
• Critical PDS Architectural Tenets

• Level 1 Requirements
• OAIS Functional Archive Model
• Basic Ingest Concepts

• Critical Level 2/3 Requirements
• PDS Data Architecture and Standards

– High Level Data Model
– High Level Product Model

– Data Standards

• Existing PDS Validation Tool

• Guiding Documents

21-22 June 2006 Validation Tool Code Walk-through 8 of 101

PDS Mission

The mission of the Planetary Data System is to facilitate achievement
of NASA’s planetary science goals by efficiently collecting, archiving,
and making accessible digital data produced by or relevant to NASA’s
planetary missions, research programs, and data analysis programs*

*July 2005 e-vote by PDS Management Council

21-22 June 2006 Validation Tool Code Walk-through 9 of 101

Software System Architecture and PDS

• Architecture: The fundamental organization of a system embodied
in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution.
(ANSI/IEEE Std. 1471-2000)

• What does the PDS Architecture contain?
– Architectural Descriptions
– Architectural Principles/Tenets
– Models (data and software architecture)
– Standards

• PDS is a geographically distributed data system with nodes
consisting of 7 Discipline Nodes (Atmospheres, Geosciences,
Imaging, Navigation, PPI, Rings, Small Bodies), 1 Function (RS),
1 Program Management Node, 1 Engineering Node

21-22 June 2006 Validation Tool Code Walk-through 10 of 101

Critical Architectural Tenets Applied by EN

• Model-driven: The data model and associated data standards,
controlled via the PDS Standards process, drives the system

• Consistent Data Elements: Data elements are applied and used
consistently across the system

• Independence: The system is independent of any mission, node,
platform or location

• Reuse: Both software and data are defined and implemented in
such a way as to be reused in different deployments

• Open Source: Open source components are adopted, where
available

• Resource Impact: Adoption of PDS tools, components and
standards have minimal resource impacts on nodes and missions

21-22 June 2006 Validation Tool Code Walk-through 11 of 101

PDS Level 1 Requirements

1. PDS will provide expertise to guide and assist missions, programs,
and individuals to organize and document digital data supporting
NASA's goals in planetary science and solar system exploration.

2. PDS will collect suitably organized and well-documented data into
archives that are peer reviewed and maintained by members of the
scientific community.

3. PDS will make these data accessible to users seeking to achieve
NASA's goals for exploration and science.

4. PDS will ensure the long-term preservation of the data and maintain
their usability.

21-22 June 2006 Validation Tool Code Walk-through 12 of 101

Archiving Functional Model

NOTE: OAIS was developed from PDS. There are some differences, but can be used to explain

concepts.

Reference Model for Open Archive Information System, CCSDS 650.0-B-1, January 2002

Validation occurs here

21-22 June 2006 Validation Tool Code Walk-through 13 of 101

OAIS Archiving Ingest Model

Reference Model for Open Archive Information System, CCSDS 650.0-B-1, January 2002

Validation occurs here

21-22 June 2006 Validation Tool Code Walk-through 14 of 101

Basic PDS Ingest Concepts

• PDS Data Producers include missions, instrument teams, PIs, etc
who submit data to PDS for inclusion in the archive

• PDS Data Producers require
– Standards for archival products
– Tools for validating archival products
– Mechanisms for submitting data products

• PDS Discipline Nodes coordinate data submissions
– Work with producers to design data products based on PDS Standards
– Schedule the delivery of products
– Validate all products submitted to the archive

21-22 June 2006 Validation Tool Code Walk-through 15 of 101

Level 2/3 Archiving Standards

1.4 Archiving Standards: PDS will have archiving standards for planetary
science data

1.4.1 PDS will define a standard for organizing, formatting, and documenting
planetary science data

1.4.2 PDS will maintain a dictionary of terms, values, and relationships for
standardized description of planetary science data

1.4.3 PDS will define a standard grammar for describing planetary science data

1.4.4 PDS will establish minimum content requirements for a data set (primary and
ancillary data)

1.4.5 PDS will establish minimum sets of archival data from missions and other
major data providers

1.4.6 PDS will develop, publish and implement a process for managing changes to
the archive standards

1.4.7 PDS will keep abreast of new developments in archiving standards

21-22 June 2006 Validation Tool Code Walk-through 16 of 101

Level 2/3 Tool Requirements

1.5Archiving Tools: PDS will have tools to assist data producers in
assembling, validating, and submitting archival products

1.5.1 PDS will provide tools to assist data producers in generating PDS
compliant products

1.5.2 PDS will provide tools to assist data producers in validating
products against PDS standards

1.5.3 PDS will provide tools to assist data producers in submitting
products to the PDS archive

1.5.4 PDS will provide documentation for installing, using, and interfacing
with each tool

21-22 June 2006 Validation Tool Code Walk-through 17 of 101

Level 2/3 Validation Requirements on Data Submissions to PDS

2.2Validation: PDS will validate data submissions to ensure
compliance with standards.

2.2.1 PDS will develop and publish procedures for determining syntactic
and semantic compliance with its standards

2.2.2 PDS will implement procedures to validate all data submissions to
ensure compliance with standards

21-22 June 2006 Validation Tool Code Walk-through 18 of 101

PDS High Level Conceptual Data Model

21-22 June 2006 Validation Tool Code Walk-through 19 of 101

PDS Conceptual Product Model Architecture

Data Object

DATA_SET_ID = "ULY-J-VHM/FGM-4-

SUMM-JGCOORDS-60S-V1.0"

SPACECRAFT_NAME = "ULYSSES"
INSTRUMENT_NAME = “ULYSSES

CAMERA”

TARGET_NAME = "JUPITER"

START_TIME = 1992-01-
26T00:00:30.000Z

STOP_TIME = 1992-02-

06T23:59:30.000Z

MISSION_PHASE_NAME = "JUPITER

ENCOUNTER"
PRODUCT_ID = "VHM25_37.IMG“

….

Metadata

Object (in ODL)

Product

Schema

Defined By

Describes…

Data Dictionary Defined By

Data Elements

Data Element Model

Keywords

Information Object

Conceptual Model

 Implements

 Defines

 Structured using

Implemented By

21-22 June 2006 Validation Tool Code Walk-through 20 of 101

Data Standards

• Planetary Science Data Dictionary

• Standards for organizing archival data
– Volume standards (e.g., Layout, catalog files, etc)

– Structure/grammar standards (e.g, Object Description Language)
– Standards for describing data products (e.g., data object structure, etc)

21-22 June 2006 Validation Tool Code Walk-through 21 of 101

Existing PDS Validation Tool

• LVTOOL: Developed in the early 1990s to validate PDS archives

– Used extensively by the nodes

– Used sometimes by the missions

– Ported to various platforms

– Increasing number of issues

– Original developers long gone…

– Needs and experience of PDS has evolved

21-22 June 2006 Validation Tool Code Walk-through 22 of 101

Guiding Documents

• PDS Level 1,2,3 Requirements, May 2006

• Reference Model for Open Archive Information System, CCSDS
650.0-B-1, January 2002

• Reference Architecture for Space Information Management (draft),
CCSDS 312.0-G-1, May 2006

• Planetary Data System (PDS) Standards Reference, March 20,
2006, Version 3.7, JPL D-7669, Part 2

• Planetary Science Data Dictionary Document, August 28, 2002,
Planetary Data System (PDS), JPL D-7116, Rev E.

• Information technology—Metadata registries (MDR)—Part 1:
Framework. International Standard, ISO/IEC 11179-1:2004. 2nd
ed. Geneva: ISO, 2004

Standards Overview

Elizabeth Rye

21-22 June 2006 Validation Tool Code Walk-through 24 of 101

Outline

• Brief overview of an archive volume / package

• What is a data product?

• What is a data object?

• What is a PDS label?
– Grammar - the Object Description Language

– Nomenclature - Data Element and Object Names and the PSDD
– Format - Relationships between files, labels, and data objects
– Contents - Expected components of a PDS label

21-22 June 2006 Validation Tool Code Walk-through 25 of 101

PDS Volume Structure

21-22 June 2006 Validation Tool Code Walk-through 26 of 101

What is a PDS Data Product?

PDS_VERSION_ID = PDS3
DD_VERSION_ID =
LABEL_REVISION_NOTE =

/* FILE CHARACTERISTICS */
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 324
FILE_RECORDS = 334
LABEL_RECORDS = 7

/* POINTERS TO DATA OBJECTS */
^IMAGE = 8
^HISTOGRAM = 333

/* IDENTIFICATION DATA ELEMENTS */
 .
 .
 .

/* DATA OBJECT DEFINITIONS */
OBJECT = IMAGE
 .
 .
 .
END_OBJECT = IMAGE

OBJECT = HISTOGRAM
 .
 .
 .
END_OBJECT = HISTOGRAM
END

21-22 June 2006 Validation Tool Code Walk-through 27 of 101

What is a Data Object?

• Primary Objects
– IMAGE
– QUBE
– SERIES

– SPECTRUM
– SPREADSHEET
– TABLE

• Secondary Objects
– HEADER

– HISTOGRAM
– PALETTE

21-22 June 2006 Validation Tool Code Walk-through 28 of 101

What is a PDS Label?

• Grammar

• Nomenclature
• Format

• Contents

21-22 June 2006 Validation Tool Code Walk-through 29 of 101

Object Description Language

• Character Set

• Lexical Elements

• Statements

• Values
• ODL / PVL Usage

The Object Description Language (ODL) is the language used to
encode data labels for the Planetary Data System.

21-22 June 2006 Validation Tool Code Walk-through 30 of 101

Object Description Language

• Character Set
– ISO 646; US version is ASCII

– Letters - A-Z, a-z; not case sensitive (except for character strings)
– Digits - 0-9
– Special Characters - = {} () + - <> . “” ‘’ _ , / * : # & ^

– Spacing Characters - space (horizontal tab)
– Format Effectors - CR, LF (FF, VT)
– Control characters - may appear in text strings

21-22 June 2006 Validation Tool Code Walk-through 31 of 101

Object Description Language

• Lexical Elements
– Lexical elements are the basic building blocks of the ODL. Statements

in the language are composed by stringing lexical elements together.
The lexical elements of ODL are:
• Numbers

– Integers in decimal notation (123)
– Integers in based notation (2#1111011#)

– Real numbers in decimal notation (123.4)
– Real numbers in scientific notation (1.234E2)

• Dates and Times

– Dates (YYYY-MM-DD or YYYY-DOY)
– Times (hh:mm:ss[.sss][Z]) (All times interpreted as UTC)
– Date/Times (YYYY-MM-DDThh:mm:ss[.sss]Z)

– Date/Time formats may be truncated to match precision of the
value

21-22 June 2006 Validation Tool Code Walk-through 32 of 101

Object Description Language

• Lexical Elements (cont’d)
• Strings

– Text strings
» Double quoted
» Used to hold arbitrary strings of characters, including

format effectors and control characters; thus may span
multiple lines

» May not contain double quote
– Symbol strings

» Single quoted
» Sequences of characters used to represent symbolic

values (ex. Image_id = ‘J123-U2A’)
» May not contain apostrophe, format effectors, or control

characters; thus, may not span multiple lines
– Current PDS implementation of ODL does not require syntactic

differentiation between symbols and text strings; therefore,
double quotes should be used in both cases

21-22 June 2006 Validation Tool Code Walk-through 33 of 101

Object Description Language

• Lexical Elements (cont’d)
• Identifiers

– Used as the names of objects and attributes, and as the value of
symbolic literals

– Composed of letters, digits, and underscores
– Underscores are used to separate words
– First character must be a letter; the last character may not be an

underscore
– Examples: VOYAGER_2, BLUE_FILTER, USA_NASA_PDS_1_0007
– Reserved Identifiers: END, END_OBJECT, END_GROUP, GROUP,

OBJECT

• Special symbols used for operators, etc.
– = the assignment operator
– , separates the values of an array or a set
– * serves as the multiplication operator in units expressions
– / serves as the division operator in units expressions
– ^ denotes a pointer to an object
– < > enclose units expressions
– () enclose the elements of a sequence
– { } enclose the elements of a set
– ** the exponentiation sign within units expressions

21-22 June 2006 Validation Tool Code Walk-through 34 of 101

Object Description Language

• Statements
– An ODL-encoded label is made up of zero, one, or more statements

followed by the reserved identifier END.

– There are four types of statements:
• Attribute assignment statement
• Pointer statement

• Object statement

• Group statement

21-22 June 2006 Validation Tool Code Walk-through 35 of 101

Object Description Language

• Statements (cont’d)
– Labels are composed of lines; each line is a string of characters

terminated by the CR, LF format effectors
• Only one statement per line, although a statement may span

multiple lines
• Format effectors may appear before, after, or between lexical

elements without changing the meaning of the statement. Thus,
the following are equivalent:

FILTER_NAME = {RED, GREEN, BLUE}
FILTER_NAME = {RED,
 GREEN,
 BLUE}

• A line may include a comment
– Comments may not span lines
– Comment delimiters are “/*” and “*/”
– Comments may not contain format effectors
– Comments should be ignored when parsing ODL labels
– Comment delimiters within text strings are interpreted as part of string
– Characters on a line following a comment are ignored

21-22 June 2006 Validation Tool Code Walk-through 36 of 101

Object Description Language

• Statements (cont’d)
– Attribute Assignment Statements

• Used to specify the value for an attribute of an object
• Value may be a singular scalar value, an ordered sequence of values, or an

unordered set of values
• May optionally contain a namespace identifier; when pre-pended to the

element identifier, indicates that the latter has a local definition within the
context identified by the namespace_identifier

• Examples:

RECORD_BYTES = 800

TARGET_NAME = JUPITER

SOLAR_LATITUDE = (0.25 <DEG>, 3.00 <DEG>)

FILTER_NAME = {RED, GREEN, BLUE}

CASSINI:TARGET_NAME = JUPITER

MRO:SOLAR_LATITUDE = (0.25 <DEG>, 3.00 <DEG>)

VOYAGER:FILTER_NAME = {RED, GREEN, BLUE}

21-22 June 2006 Validation Tool Code Walk-through 37 of 101

Object Description Language

• Statements (cont’d)
– Pointer Statements

• Indicate the location of an object
• Value may be a scalar, ordered sequence, or unordered set
• Within PDS, three types of pointers:

– Data Location Pointers
» Indicate the position of an object within another object
» May refer to another location within the same file or to a location

within an external file
» If units not specified, default is records

^IMAGE = 12

^IMAGE = 600 <BYTES>

^INDEX_TABLE = “INDEX.TAB”

^SERIES = (“C100306.DAT”, 2)

^SERIES = (“C100306.DAT”, 700 <BYTES>)

21-22 June 2006 Validation Tool Code Walk-through 38 of 101

Object Description Language

• Statements (cont’d)
– Pointer Statements (cont’d)

• Another common usage of pointers is to reference external files
– Include Pointers

» Files referenced by include pointers are included directly at the
location of the pointer statement

» Act like the “#include” statements in C program source files

^STRUCTURE = “ENGTAB.FMT”

^STRUCTURE = “IMAGE.FMT”

^CATALOG = “CATALOG.CAT”

^DATA_SET_MAP_PROJECTION = “DSMAPDIM.CAT”

– Related Information Pointers
» Files references by related information pointers provide additional

documentation of special use to human readers
» Formed using elements ending in “DESCRIPTION” or “DESC”
» Reference text files not written in ODL

^DESCRIPTION = “TRK_2_25.ASC”

21-22 June 2006 Validation Tool Code Walk-through 39 of 101

Object Description Language

• Statements (cont’d)
– Object Statements

• The OBJECT statement begins the description of an object
• The object description consists of a set of attribute assignment

statements defining the values of the object’s attributes
• If the object is itself composed of other objects, then OBJECT

statements for the component objects are nested within the
object’s description

OBJECT = object_identifier

 ATTRIBUTE1 = VALUE1

 ATTRIBUTE2 = VALUE2

END_OBJECT = object_identifier

• The object identifer gives a name to the particular object being
described. (Ex. IMAGE and BROWSE_IMAGE)

• The object identifier at the end of the OBJECT statement is
optional, but if present, must match that at the beginning.

21-22 June 2006 Validation Tool Code Walk-through 40 of 101

Object Description Language

• Statements (cont’d)
– Group Statements

• The GROUP statement is used to group together statements that
are not components of a larger object (Ex. BAND_BIN group)

GROUP = group_identifier

 ATTRIBUTE1 = VALUE1

 ATTRIBUTE2 = VALUE2

END_GROUP = group_identifier

• The group identifier gives a name to the particular group being
described.

• The group identifier at the end of the GROUP statement is optional,
but if present, must match that at the beginning.

• Although ODL permits nesting of groups, the PDS implementation
does not. PDS groups may only contain attribute assignment
statements, include pointers, or related information pointers (not
data location pointers)

21-22 June 2006 Validation Tool Code Walk-through 41 of 101

Object Description Language

• Values
– ODL provides scalar values, ordered sequences of values, and

unordered sets of values

– A scalar value consists of a single lexical element, either numeric,
date/time, text string, or symbolic

• Numeric scalar values may optionally include units expression
– A units expression is always included within angle brackets

– The expression may consist of a single units identifier (<KM> for
kilometers) or more complex values (<KM/SEC> for velocity)

– There is no defined maximum or minimum magnitude or precision for
numeric values since the actual range and precision of numbers that can
be represented varies based on the computer platform being used. If
software for reading ODL encounters a numeric value too large to be
represented, the software must report an error to the user.

21-22 June 2006 Validation Tool Code Walk-through 42 of 101

• Values (cont’d)

• Text string scalar values read in from ODL labels are reassembled
into a string of characters, by replacing format effectors with space
characters (exception when last character is a hyphen)

• Symbolic values may be specified as either identifiers or symbol
strings

TARGET_NAME = IO

SPACECRAFT_NAME = VOYAGER_2

SPACECRAFT_NAME = “VOYAGER-2”

SPACECRAFT_NAME = “VOYAGER 2”

REFERENCE_KEY_ID = SMITH1997

REFERENCE_KEY_ID = “LAUREL&HARDY1997”

• Note that symbolic values are converted to uppercase on input.

“Voyager_2” “VOYAGER_2”

Object Description Language

21-22 June 2006 Validation Tool Code Walk-through 43 of 101

Object Description Language

• Values (cont’d)
– A sequence represents an ordered set of values. It can be used to

represent arrays and other kinds of ordered data. Only one- and two-
dimensional sequences are allowed.

– A sequence may have any kind of scalar value for its members. It is
not required that all members of the sequence be of the same type.

AVERAGE_ECCENTRICITY = (0, 1, 2, 3, 4, 5, 9)

INSTRUMENT_TEMPERATURE = ((34.7, 45.5), (23.8, 19.5))

– Sets are used to specify unordered values drawn from some finite set
of values. Note that the empty set is allowed.

– The order in which the values appear in the set is not significant and
need not be preserved when a set is read and manipulated. There is
no upper limit on the number of values in a set.

FILTER_NAME = {RED, GREEN, BLUE, HAZEL}

21-22 June 2006 Validation Tool Code Walk-through 44 of 101

What is a PDS Label?

• Grammar

• Nomenclature
• Format

• Contents

21-22 June 2006 Validation Tool Code Walk-through 45 of 101

PDS Data Elements

• Construction of Data Element Names
– Composed of descriptor words and class words, connected by an

underscore
– Constructed from left to right, from most specific to most generic

• “the name of a parameter in a data set”

DATA_SET_PARAMETER_NAME

– Constructed from standard ASCII alphanumeric characters and the
underscore

– Not case sensitive

The PDS has established data nomenclature standards which
define the rules for constructing Data Element and Data Object
names.

21-22 June 2006 Validation Tool Code Walk-through 46 of 101

PDS Data Elements

• Class Words
– Comprise the rightmost component in a data element name

– Identifies the basic information type
– COUNT, DATE, DESCRIPTION, FLAG, FORMAT, GROUP, ID,

MASK, NAME, NOTE, NUMBER, RANGE, RATIO, SEQUENCE, SET,
SUMMARY, TEXT, TIME, TYPE, UNIT, VALUE, and VECTOR

• Descriptor Words
– Should be selected from list of existing descriptors; new descriptor

words can be submitted for review
– Examples: ANGLE, ALTITUDE, LOCATION, RADIUS, and

WAVELENGTH

• Range-Related Components
– FIRST, LAST, START, STOP, MINIMUM, and MAXIMUM

21-22 June 2006 Validation Tool Code Walk-through 47 of 101

PDS Data Elements

• Planetary Science Data Dictionary
– Approved data elements and their attributes

• General data type, unit id, standard value type, minimum and
maximum value and length, default value, description, standard
values, change date, status, source, etc.

– Approved data objects
• Description, required and optional data elements, required and

optional sub-objects.

21-22 June 2006 Validation Tool Code Walk-through 48 of 101

What is a PDS Label?

• Grammar

• Nomenclature
• Format

• Contents

21-22 June 2006 Validation Tool Code Walk-through 49 of 101

Label Format

Attached
Detached

Combined
Detached

21-22 June 2006 Validation Tool Code Walk-through 50 of 101

What is a PDS Label?

• Grammar

• Nomenclature
• Format

• Contents

21-22 June 2006 Validation Tool Code Walk-through 51 of 101

Label Contents

• Label Standards Identifiers
• File Characteristics Data Elements
• Data Object Pointers

• Identification Data Elements
• Descriptive Data Elements
• Data Object Definitions

• END Statement

21-22 June 2006 Validation Tool Code Walk-through 52 of 101

Label Contents

• Label Standards Identifiers
– Each PDS label must begin with the PDS_VERSION_ID data element.

This identifies the version of the Standards to which the label adheres.

– The PDS does not require Standard Formatted Data Unit (SFDU)
labels on individual products, but they may be desired for conformance
with specific project or other agency requirements. When provided, the
SFDU label must precede the PDS_VERSION_ID keyword.

– The DD_VERSION_ID element identifies the version of the PSDD to
which a label complies.

– The LABEL_REVISION_NOTE element is a free form, unlimited-length
character string providing information regarding the revision status and
authorship of a PDS label.

CCSD… [optional SFDU label]
PDS_VERSION_ID = PDS3
DD_VERSION_ID = PDSCAT1R52
LABEL_REVISION_NOTE = “1999-08-01, Anne Raugh (SBN), initial

release.”

21-22 June 2006 Validation Tool Code Walk-through 53 of 101

Label Contents

• File Characteristics Data Elements
– The file characteristic data elements provide important attributes of the

physical structure of a data product file. The data elements are:

• RECORD_TYPE - the record characteristics of the data product file

• RECORD_BYTES - the number of bytes in each physical record in the data
product file

• FILE_RECORDS - the number of physical records in the file

• LABEL_RECORDS - the number of physical records that make up the label

21-22 June 2006 Validation Tool Code Walk-through 54 of 101

Label Contents

• File Characteristics Data Elements (cont’d)
– Not all of these data elements are required in every data product label.

The table below lists the required (Req) and optional (Opt) file
characteristic data elements for a variety of data products and labeling
methods for both attached (Att) and detached (Det) labels. Where (max)
is specified, the value indicates the maximum size of any physical record
in the file.

n/a n/aOmax n/aRmax RmaxReq ReqRECORD_BYTES

n/a n/aOpt n/aReq n/aReq n/aLABEL_RECORDS

n/a n/aOpt OptReq ReqReq ReqFILE_RECORDS

UNDEFINEDSTREAMVARIABLE_LENGTHFIXED_LENGTHRECORD_TYPE

Att DetAtt DetAtt DetAtt DetLabeling Method

21-22 June 2006 Validation Tool Code Walk-through 55 of 101

Label Contents

• Data Object Pointers
– Data object pointers are required in labels with one exception: attached

labels that refer to only a single object. In the absence of a pointer, the
data object is assumed to start in the next physical record after the
PDS product label area. This is commonly the case with ASCII text
files described by a TEXT object and ASCII SPICE files described by a
SPICE_KERNEL object.

– Object pointers are required for all data objects, even when multiple
data objects are stored in a single data product file.

21-22 June 2006 Validation Tool Code Walk-through 56 of 101

Label Contents

• Data Object Pointers (cont’d)

21-22 June 2006 Validation Tool Code Walk-through 57 of 101

Label Contents

• Identification Data Elements
– These data elements provide additional information about a data

product that can be used to relate the product to other data products
from the same data set or data set collection.

– The minimum set of identification elements required by the PDS
standards is sufficient to populate a high-level database.

– Data preparers will choose additional identification elements from the
Planetary Science Data Dictionary (PSDD) to support present and
future cataloging and search operations.

21-22 June 2006 Validation Tool Code Walk-through 58 of 101

Label Contents

• Identification Data Elements
– Required Data Elements for Spacecraft Science Data Products

DATA_SET_ID
PRODUCT_ID
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME
SPACECRAFT_CLOCK_START_COUNT
PRODUCT_CREATION_TIME

– Required Data Elements for Earth-based Science Data Products
DATA_SET_ID
PRODUCT_ID
INSTRUMENT_HOST_NAME
INSTRUMENT_NAME
TARGET_NAME
START_TIME
STOP_TIME
PRODUCT_CREATION_TIME

21-22 June 2006 Validation Tool Code Walk-through 59 of 101

Label Contents

• Descriptive Data Elements
– PDS recommends inclusion of additional data elements related to

specific types of data. These descriptive elements should include any
elements needed to interpret or process the data objects or which
would be needed to catalog the data product to support potential
search criteria at the product level.

– Recommendations for descriptive data elements to be included come
from the PDS mission interface personnel as well as the data
producer’s own suggestions. These additional data elements are
selected from the Planetary Science Data Dictionary.

21-22 June 2006 Validation Tool Code Walk-through 60 of 101

Label Contents

• Data Object Definitions
– The PDS requires a separate data object definition within the product

label for each object in the product, to describe the structure and
associated attributes of each constituent object. Each object definition,
whether for a primary or a secondary object, must have a
corresponding object pointer.

– The PDS has designed a set of standard data object definitions to be
used for labeling products. Among these standard objects are those
designed to describe structures commonly used for scientific data
storage. The complete set of PDS object definition requirements, along
with examples of product labels, is provided in Appendix A of the PDS
Standards Reference.

21-22 June 2006 Validation Tool Code Walk-through 61 of 101

Label Contents

• END Statement
– The END statement ends a PDS label.

– Where required by an outside agency, the END statement may be
followed by one or more SFDU labels.

Validation Tool
Requirements and Design

Sean Hardman

Paul Ramirez

21-22 June 2006 Validation Tool Code Walk-through 63 of 101

Requirement Overview (1 of 2)

• Scope
– The scope of the tool specifically focuses on PDS label and product

validation, as directed by the PDS Management Council on October 5,
2005 at the Management Council face-to-face meeting.

– Other aspects of validation (e.g. catalog, volume and data set
validation) will be covered in future phases.

• References
– Planetary Data System (PDS) Validation Tool Requirements, April 1,

2006, Version 1.2.

– Planetary Data System (PDS) Level 1, 2 and 3 Requirements, May
2006.

– Planetary Data System (PDS) Standards Reference, March 20, 2006,
Version 3.7, JPL D-7669, Part 2.

– Planetary Science Data Dictionary Document, August 28, 2002,
Planetary Data System (PDS), JPL D-7116, Rev E.

– Tools Survey, April 2005.

21-22 June 2006 Validation Tool Code Walk-through 64 of 101

Requirements Overview (2 of 2)

• General
– Requirements pertaining to the identification and specification of PDS

data products to be validated by the tool.

• Syntactic Validation
– Requirements ensuring the grammar of the PDS label is compliant

(i.e., the grammar used in labels conforms to the ODL specification, as
adopted by the PDS).

• Semantic Validation
– Requirements ensuring the structure of the PDS label is compliant (i.e.,

the structure of the objects, groups, keywords, and keyword-values,
used in labels, conforms to the Planetary Science Data Dictionary
(PSDD) specification).

• Content Validation
– Requirements ensuring that the PDS label accurately describes the

data object (i.e., the objects, groups, keywords, and keyword-values in
the description accurately describe the structure used within the data
object).

• Reporting
– Requirements pertaining to reporting the results of validation.

21-22 June 2006 Validation Tool Code Walk-through 65 of 101

Requirements Status

• On February 23, 2006, the EN held a telecon with the PDS Technical Staff
to review the Requirements for the Validation Tool.

– Reviewed version 1.1 of the Validation Tool Requirements Document.
– 66 RFAs (55 distinct) were authored as a result of the review.
– Version 1.2 was prepared and distributed for comment generating another 22

RFAs.

• On June 1, 2006, the EN held a telecon with the PDS Technical Staff to
discuss Requirements Status and Preliminary Design of the Validation
Tool.

– A number of issues with regard to the requirements were discussed.

– The Test Plan and Schedule were also discussed.

– The preliminary design including a state chart for validation was presented.

– A number of action items were assigned.

• Current RFA Status

– 88 Total (60+ Distinct)

• 52 Open

• 04 Addressed

• 02 Tabled

• 30 Closed

21-22 June 2006 Validation Tool Code Walk-through 66 of 101

Design Overview

• The preliminary design has focused on aspects of the Validation
Tool not likely to change during requirements finalization.

– Syntactic and semantic validation based on chapter 12 of the PDS

Standards Reference.

– The structure and content of a PDS label.

– The format and content of a PDS compliant data dictionary.

• Supporting technologies have been incorporated where possible to
reduce the overall effort of building the Validation Tool.

21-22 June 2006 Validation Tool Code Walk-through 67 of 101

Supporting Technology (1 of 2)

• Java 2 SDK, Standard Edition, Sun Microsystems.
– Java support is available on the PDS supported platforms (e.g. Linux,

Solaris, Windows and Mac OSX).
– Enables support for additional platforms without additional effort.

– The tool will be written entirely in Java using version 1.4 for
compatibility with older environments.

• Commons Command Line Interface (CLI), Apache Software
Foundation.
– An API for processing command line interfaces.
– Alleviates the need to develop a command-line parser.
– Provides for standard and consistent command-line interfaces.

• LOG4J, Apache Software Foundation.
– An API that allows for control of which log statements are output with

arbitrary granularity.

– Alleviates the need to develop an error message handler.
– Aides in meeting the Validation Tool’s numerous and specific reporting

requirements.

21-22 June 2006 Validation Tool Code Walk-through 68 of 101

Supporting Technology (2 of 2)

• ANother Tool for Language Recognition (ANTLR), Terence Parr.
– A language tool that provides a framework for constructing

recognizers, compilers, and translators from grammatical descriptions.
– Alleviates the need to develop a label parser from scratch.

– Provides a structured environment for developing a parser.

• JUnit, Erich Gamma and Kent Beck.
– A regression testing framework used by the developer who implements

unit tests in Java.

– More on this when Unit Testing is discussed.

• Maven, Apache Software Foundation.
– A software project management and comprehension tool that can

manage a project's build, reporting and documentation aspects.
– This tool is essentially a glorified “make” allowing developers to better

manage the build process.

21-22 June 2006 Validation Tool Code Walk-through 69 of 101

Tool Architecture

21-22 June 2006 Validation Tool Code Walk-through 70 of 101

Tool Architecture Description

• Actual and Proposed Tools
– Design/Generation Tool (Initial Requirements Phase)

• GUI application intended for use at the Discipline and Data Nodes for
designing PDS labels and label templates.

– Validation Tool (Design and Implementation Phase)
• Command-line application intended for use at the Discipline and Data Nodes

for preparing PDS archival products.

– Submission Tool (Proposal Phase)
• Web-based application hosted at the Engineering Node intended for use by

the Discipline Nodes for submitting PDS archival products to the PDS
Catalog.

• Tool Infrastructure
– Will provide a single interpretation of the PDS standards for better

coordination between the design, validation and submission phases.
– Will provide common functions for label parsing, dictionary

management and reporting.

21-22 June 2006 Validation Tool Code Walk-through 71 of 101

Validation Tool Architecture

21-22 June 2006 Validation Tool Code Walk-through 72 of 101

Software Design
State Chart (1 of 3)

21-22 June 2006 Validation Tool Code Walk-through 73 of 101

Software Design
State Chart (2 of 3)

21-22 June 2006 Validation Tool Code Walk-through 74 of 101

Software Design
State Chart (3 of 3)

21-22 June 2006 Validation Tool Code Walk-through 75 of 101

Software Design
State Chart Descriptions (1 of 2)

• Read in Label
– Locate and read in the specified file.

• Validate SFDU Header
– If a header is present, validate as specified in chapter 16 of the PDS

Standards Reference.

• Check ODL Syntax
– Validate to the grammar specified in chapter 12 of the PDS Standards

Reference.

• Follow Include Pointers
– Locate and include the contents of files referenced by pointers.

• Check Label Specific Rules
– If this is a data product label, validate it against the associated rules.

• Load Dictionary
– Locate and read in the specified dictionary.
– Multiple dictionaries will be supported in following versions.

21-22 June 2006 Validation Tool Code Walk-through 76 of 101

Software Design
State Chart Descriptions (2 of 2)

• Dictionary Validation
– Validate all objects, groups, and elements against loaded dictionary

definitions.

• Load Object Validator
– Depending on the type of object to validate, an appropriate class will

be loaded.

• Load Data Object
– Read in the bytes that make up the data object.

• Validate Data Object
– Validate the object against its description using the loaded data object

validator.

• Generate Report
– Creates a report according to the specified reporting options.

21-22 June 2006 Validation Tool Code Walk-through 77 of 101

Software Design
Class Diagram - Label Parser

21-22 June 2006 Validation Tool Code Walk-through 78 of 101

Software Design
Class Diagram - Label Structure

21-22 June 2006 Validation Tool Code Walk-through 79 of 101

Software Design
Class Description - Label

• A PDS Label consists of one or more statements.
• Object Statement

– Example: OBJECT = IMAGE … END_OBJECT = IMAGE
– May contain Object statements.
– May contain Pointer statements.
– May contain Attribute statements.

• Group Statement
– Example: GROUP = SHUTTER_TIMES … END_GROUP = SHUTTER_TIMES
– May contain Attribute statements.

• Pointer Statement
– Example: ^STRUCTURE = “TABLE.FMT”

• Attribute Statement
– Example: TARGET_NAME = IO
– Contains a value:

• Scalar Value (Text String, Numeric, Date/Time or Symbol)
• Sequence Value

– May contain multiple Sequences.

• Set Value
– May contain multiple Sets.

• Comment Statement
– Example: /* Image Description */

21-22 June 2006 Validation Tool Code Walk-through 80 of 101

Software Design
Class Diagram - Label and Data Object Validators

21-22 June 2006 Validation Tool Code Walk-through 81 of 101

Software Design
Class Diagram - Dictionary Parser

21-22 June 2006 Validation Tool Code Walk-through 82 of 101

Software Design
Class Diagram - Dictionary

21-22 June 2006 Validation Tool Code Walk-through 83 of 101

Software Design
Class Diagram - Type Checker

21-22 June 2006 Validation Tool Code Walk-through 84 of 101

Software Design
Class Diagram - Data Object Validator

21-22 June 2006 Validation Tool Code Walk-through 85 of 101

Interfaces

• Application
– Command-Line

• Proposed, obsolete and questionable options are detailed in the following
slides.

– Application Program Interface (API)
• Under construction.

• Dictionary
– As specified in the command-line options, one or more PDS compliant

data dictionaries can be referenced.

– This assumes one PSDD and zero to many local data dictionaries.
– All specified dictionaries will be merged into one master dictionary for

validation.

• Report
– Still working on the report formats.

21-22 June 2006 Validation Tool Code Walk-through 86 of 101

Interfaces
Application - Command-Line (1 of 2)

• Proposed Options
– Validation

• Target: Specifies the file(s) to be validated. Accepts multiple entries,
directories and wild cards.

• Recursive: Specifies whether specified directories should be traversed
recursively. Default is yes.

• Ignore Directories: Specify a text file containing directories to ignore.

• Ignore Files: Specify a text file containing file extensions to ignore.

• Follow Pointers: Specify whether files referenced by pointers are verified
for existence and included for parent label validation. Default is yes. The
alternative is to validate as partial labels.

• Include Directory: Specify the path to search for pointer files. Default is the
current directory.

• Dictionary: Specifies the PDS compliant data dictionary(s) to be referenced
for validation. Assumes the full version and not the index. If not provided,
dictionary validation is not performed.

• Aliases: Specify whether aliases are allowed. Default is yes.

• Data Objects: Specify whether data objects are validated. Default is yes.

21-22 June 2006 Validation Tool Code Walk-through 87 of 101

Interfaces
Application - Command-Line (2 of 2)

• Proposed Options (cont)
– Reporting

• Report: Specifies the report file specification.
• Detail: Specifies report detail (Verbose, Summary or Minimal). Default is

Verbose.

• Severity: Specifies the message severity level and above to include (Debug,
Info, Warn, Error or Fatal). Default is Info.

• Format: Specifies the format of the report (Human or Machine Readable).
Default is Human.

• Max Errors: Specifies the maximum number of errors to report. Default is
300.

– Miscellaneous
• Help: Display application usage (command-line arguments).

• Version: Display application version.

Code Walk-through Guidelines

Sean Kelly

21-22 June 2006 Validation Tool Code Walk-through 89 of 101

Summary (1 of 3)

• Code reviews are the best tool for discovering defects and

improving code

• “Ownership” of code is unhealthy

– Resulting from cognitive dissonance

– Egoless programming

21-22 June 2006 Validation Tool Code Walk-through 90 of 101

Summary (2 of 3)

• You are not your code

– You will make mistakes

• Authority comes from knowledge

– Review, don’t rewrite

• Be kind to the coder

– Be cruel to the code

21-22 June 2006 Validation Tool Code Walk-through 91 of 101

Summary (3 of 3)

• Code reviews must be orthogonal to performance reviews

– Management may reward only for participation

– Never relate performance to content of review

Validation Tool Code Walk-through

Paul Ramirez

21-22 June 2006 Validation Tool Code Walk-through 93 of 101

Source Code

• See the source code attachment from the review package.

• Source Tree (pds-tools/trunk/)
– src/conf/

• This directory will contain any necessary configuration files.

– src/java/gov/nasa/jpl/pds/tools/
• dict/

– This directory contains Java source code for parsing and representing the dictionary.

• label/
– This directory contains Java source code for parsing, representing and validating labels.

• object/
– This directory contains Java source code for reading and validating data objects.

– src/resources/grammar/
• This directory contains the source code for the label parsing grammar utilized by

ANTLER.

– src/test/
• This directory will contain source code for the jUnit test cases.

– src/testdata/
• This directory contains the initial effort at building the regression test suite.

– xdocs/
• This directory will contain the documentation.

Test Approach

Emily Law

21-22 June 2006 Validation Tool Code Walk-through 95 of 101

Test Plan

• Development Testing
– Unit Testing: Tests performed at the code-level.
– Integration Testing: Tests performed at the application-level.

• Beta Testing
– A phased approach involving Node participation.

• Acceptance Testing
– Final integration testing to be performed for acceptance.

• Documentation
– Test Plan

• The plan for testing the Validation Tool will be incorporated into the
Engineering Node Test Plan.

– Test Procedures
• Procedures will be developed detailing the steps to be performed, test data

to be used and the results expected.

– Test Reports
• Reports will be prepared for and made available for each release of the

Validation Tool.

– Anomaly Tracking
• Bug reports will be tracked and reported on at release.

21-22 June 2006 Validation Tool Code Walk-through 96 of 101

Test Plan
Development Testing - Unit Testing

• The goal of unit testing is to isolate each part of the program and
show that the individual parts are correct.

• A test case is developed to test the interface and functionality of a
single class.

• Test cases are exercised at build time allowing for immediate
detection of coding anomalies.

• Test cases are included with the source code providing a good

source of documentation and enabling on-site testing.

• Test cases for the Validation Tool will be built and managed with

Junit (testing framework).

21-22 June 2006 Validation Tool Code Walk-through 97 of 101

Test Plan
 Development Testing - Integration Testing

• For now, integration is limited to integration of the classes into a
single command-line program.

• A regression test suite will be built supported with documented test
data.
– Each test case will include test data (e.g. PDS label), a description of

the scenario being tested and an example report/result.

– A procedure will be put in place for accepting test cases from the
Nodes.

– Test cases will be captured and managed in the source tree.

– Where feasible, this test suite will be automated.

• Cross-platform tests will be performed on PDS-supported
platforms.

• Installer package tests will be performed ensuring proper
installation.

21-22 June 2006 Validation Tool Code Walk-through 98 of 101

Test Plan
Beta Testing

• Make integration & test build with test procedures available to
Node personnel for local testing.

• Implement a phased and iterative approach, initially including three
Nodes (ATMOS, GEO and PPI) with increased participation in
subsequent phases.

• Provide a method for accepting test cases from the Nodes to be
included in the regression test suite.

• Provide a method for tracking bug reports from the Nodes.

21-22 June 2006 Validation Tool Code Walk-through 99 of 101

Test Plan
Acceptance Testing

• Test cases generated by the Nodes will be fully incorporated into
the final regression test suite.

• The final regression test suite will be performed on acceptance
build.

21-22 June 2006 Validation Tool Code Walk-through 100 of 101

Configuration Management

• Source Code Version Control System
– Source Code (Java, XML, etc.)

– Unit Test Cases

– Regression Test Data

– Online Documentation

– Open Source Dependencies

• Document Management System
– Requirements Artifacts

– Design Artifacts

– Test Plan, Procedures and Reports

• PDS Web Site
– Binary Distributions

– Source Distributions

Questions
Wrap Up / Action Items

